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Abstract. Most of dynamic systems which exhibit chaotic behavior are also known to posses self-similarity
and manifest strong fluctuations of all possible scales. The meaning of this terms is not always same. In
present note we make an attempt to formulate the problem in the framework of functional analysis. The
statistical hydrodynamics is taken as a vivid physical example. The links to wavelet analysis are presented.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

Self-similarity and scale-dependence come along in many
physical phenomena. One of the most known examples
is the hydrodynamics. The incompressible fluid flow de-
scribed by the Navier-Stokes equation

∂tv + v · ∇v = −∇p+ ν∆v, ∇ · v = 0,

shows an intrinsic chaotic behavior. Formally, the solution
v = v(x, t) is a continuous differentiable function of its
arguments. In fact its behaviour is so irregular, that may
be strongly dependent on the grid size. That is why it is
more reasonable to consider v = v(x, t;∆x,∆t), taken
separately at different space and resolutions (∆x,∆t).
Physically, it is also more meaningful to consider a
resolution-dependent function, since the vector field
v(x, t) is measured as an average over a physical volume
(∆x)D∆t: this averaging is meaningless at the limit of infi-
nite resolution (∆x→ 0). Both the experimental observa-
tions in wind tunnels (the longtitudinal velocity measure-
ments) and numerical simulations show that the turbulent
velocity field resembles the Brownian motion

〈|v(x+ l)− v(x)|2〉 ∼ l2/3,

exactly as it was inferred by Kolmogorov from simple di-
mensional consideration [6].

In practical calculations the scale dependence of the
field v(x) is usually evaluated either by the multifractal
formalism (often with a help of wavelets) or by means
of renormalization group (RG) technique, with the cut-
off momentum understood as resolution parameter. So,
at least up to the authors knowledge, the analysis of the
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scale-dependent properties of singular signals is usually
performed over v(x) ∈ L2, where v(x) is assumed to be
measured at certain resolution, but this fact is nowhere
clearly fixed mathematically.

In the present paper I make an attempt to consider
the problem from the functional analysis point of view
and clarify how the object of the form v(x,∆x) — the
meaning of which is physically clear — can be treated from
mathematical standpoint. The statistical hydrodynamics
is referred to as a most vivid physical example, however
the same technique can be also applied to the Brownian
motion and signal processing.

2 Problem

Self-similarity is a synonym of scale-invariance. To be
scale-invariant means to have same properties at different
scales. Classical fractals are scale-invariant by construc-
tion. Self-similarity means to be similar (not necessary
exactly the same) at different scales. Brownian motion is
self-similar: if we look at the trajectory of Brownian parti-
cle at different resolutions of a microscope we will observe
more or less the same picture. As physical systems are
considered, the word self-similarity is more frequently at-
tributed to their dynamics than geometry.

The self-similarity of hydrodynamic velocity field fluc-
tuations 〈(δv(l))2〉 ∼ l2/3 is attributed to the behavior
of turbulent velocity field measured at different spatial
scales. For hydrodynamic velocity field it is physically
clear, that the measurement at scale l0 necessarily implies
averaging of molecular velocities over certain space do-
main of typical size l0. This procedure can be generalized
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to “an averaging of a function up to scale l” [2]

φl(x) = l−D
∫
|y|<l

φ(x− y)dDy. (1)

There are at least two conjectures here

1. The existence of “true” (no-scale) field φl(x) : l → 0.
2. The homogeneity of the measure dµ(y) = dDy.

Physically, it is quite clear, that two different fields φl(x)
and φl′(x) live in different functional spaces if l 6= l′. It
is meaningless, say, to subtract their values. Therefore,
the velocity field of hydrodynamic turbulence is something
more than a random vector field defined on RD ×R.

To characterize the turbulent velocity at certain point
x we ought to know the collection of velocity values at a
set of scales labeled by l {φl(x)}. The set of scales may be
countable

l = l0, kl0, k
2l0, k

3l0, . . . ,

say k = 1/2 for period-doubling decomposition, or contin-
uous.

To characterize this set it was proposed in [2] to use
a collection of unit fields at different scales – a “reference
field” {Rl(x)}. The principal question arising here, is how
to describe the interaction of the fluctuations of differ-
ent scales. Practically, this problem is often cope with by
decomposition of “real” (no-scale) field into slow (large-
scale) and fast (small-scale) components.

φ = V + v, where M v = 0

(M denotes mathematical expectation.) In this approach
the slow component V governs the equation for the fast
component v and the even-order moments of v contribute
to the equation for V .

From the other hand, as we know from both
Kolmogorov’s theory and RG approach, there are no abso-
lute scales in hydrodynamics, except for dissipative scale
and external scale (the size of the system). So, at least
at this middle – in the Kolmogorov range – the equa-
tions should be scale-covariant. The structure which re-
veals here looks like a fiber bundle over IRD with leaves
labeled by scale. The fluctuations of different scales may
be dependent or independent for various physical situa-
tions; but at least some similarity should be present.

To construct a basic system on this bundle let us follow
the ideas of multi-resolution analysis [7] Let us construct
a system of functional subspaces {Vi : Vi ⊂ H}, Where H
is a space of physical observables. Let the system {Vi} be
is such, that

1.

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . , (2)

2. ∪∞j=0Vj = L2(R)

3. ∩j∈ZZVj = ∅
4. The spaces Vj and Vj−1 are ”similar”:

f(x) ∈ Vj ⇔ f(ax) ∈ Vj+1, j ∈ ZZ,

where a is certain scale factor, often fixed as a = 2.

If the sequence {Vi} is bounded from above, the max-
imal subspace is called the highest resolution space; let it
be VN . Then any function from VN−1 can be represented
as a linear span of VN basic vectors. Therefore, the basis
φN of the highest resolution space provides a basis for a
whole bundle.

It seems attractive to generalize MRA axioms to the
case of continuous set of scales. Since the chain of sub-
spaces described above implies sequential coarse graining
of the finest resolution field, some details are being lost in
course of this process. The lost details can be stored into
the set of orthogonal complements

VN = VN−1 ⊕WN−1, VN−1 = VN−2 ⊕WN−2, . . . (3)

So, H =
∑
kWk,Wk ∩Wj = ∅ if j 6= k, and the system

{Wi} can be considered instead of {Vi}. The former has
the structure of σ-algebra and thus is suitable integration.

The fact, that velocities φl and φl′ live on different
leaves suggest that their Fourier decomposition should be
taken separately at their leaves

φl(x) =

∫
exp(−ık(l)x(l))φ̃l(k

(l))dµ
(l)
L (k(l)), (4)

or some other care should be taken about it in order not to
mix fluctuations with same wave vectors but contributing
to different scales. The choice of the left-invariant measure
dµ

(l)
L (k(l)) is restricted by the fact, that velocity compo-

nents measured at certain scale are mainly concentrated
close to this scale. So the measure can be expressed as

dµ
(l)
L (k) = dkW (|l−1 − ak|),

where W (x) vanish at x→ ±∞, a is a constant.
The decomposition (4) turns to be a kind of Gabor

transformation [4]. The measure can dµ can be explicitly
scale-dependent, since the probability spaces (Ωl,Ul, Pl)
are scale-dependent and their structure may be defined
separately for each scale.

At this point we have arrived to the difference from
standard wavelet approach, where the probability space is
completely determined at finest resolution scale.

3 Wavelet realization

We start our construction of multi-scale description with
simplistic one-dimensional case, which is however of prac-
tical importance since only one component of velocity field
is often measured.

Any square-integrable function f(t) ∈ L2(R) can be
represented as a decomposition with respect to the repre-
sentations of affine group

t′ = at+ b (5)

f(t) = C−1
ψ

∫
1
√
a
ψ

(
t− b

a

)
Wψ(a, b)

dadb

a2
, (6)
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which is just another form of the partition of unity with re-
spect to representation of affine group acting on a Hilbert
space H [5]

1̂ = C−1
ψ

∫
G

U∗(g)|ψ〉dµL(g)〈ψ|U(g),

which holds if there exists such ψ ∈ H, that

Cψ =
1

‖ψ‖22

∫
G

|〈ψ, |U(g)ψ〉|2dµL(g) <∞;

dµL(g) denotes left-invariant measure on G. The scalar
products Wψ(g)f ≡ 〈f, U(g)ψ〉 are known as wavelet co-
efficients, H = L2(R) in our case.

For the case of affine transformation group (5) the nor-
malization constant Cψ can be easily evaluated in Fourier
space

Cψ =

∫ ∞
−∞

|ψ̃(k)|

k
dk = 2

∫ ∞
0

|ψ̃(k)|

k
dk (7)

where ψ(t) = 1
2π

∫
exp(ıkt)ψ̃(k)dk. For the affine group

(5)

U(a, b)ψ(x) :=
1
√
a
ψ

(
x− b

a

)
; dµL(a, b) =

dadb

a2
·

(8)

The corresponding wavelet coefficients are

Wψ(a, b) =

∫
1
√
a
ψ

(
t− b

a

)
f(t)dt. (9)

For practical analytical calculations it is often more effi-
cient to calculate wavelet coefficients in Fourier represen-
tation, since multiplication should be done then instead
of convolution:

Wψ(a, b)f =
1

2π

∫
√
a exp(ıkb)ψ̃(ak)f̃(k)dk (10)

and similar for reconstruction (6). The decomposition (9)
and its inverse (6) are known as wavelet analysis. (See
e.g. [1] for general review.) The scalar product (9) is read-
ily seen to be the projection of the original “no-scale”
function f to the subspace Wa of MRA system 3.

If f is a random function defined on a probability space
(Ω,A, P ) the wavelet coefficients

Wψ(a, b, ·) =

∫
1
√
a
ψ

(
t− b

a

)
f(t, ·)dt (11)

are also random; the stochastic integration is implied. As
it is known from the theory of stochastic processes, a ran-
dom function ξ(t, ω), t ∈ IR1, ω ∈ Ω can be represented in
a spectral form

ξ(t) =

∫
φ(t, λ)η(dλ), (12)

where φ(t, λ) is a square-integrable function, η(dλ) is a
stochastic measure

M η(dλ) = 0, M |η(dλ)|2 = F (dλ).

The particular form of the spectral representation (12) is
Fourier representation

ξ(t) =

∫ ∞
−∞

exp(ıλt)η(dλ).

In a multi-scale case we can introduce a collection of ran-
dom processes, each of them belonging to its own leaf of
MRA, labeled by resolution parameter a

ξa(t) =

∫
φa(t, λ)ηa(dλ).

The peculiarity of stochastic case is, that in contrast to
the decomposition of a function with respect to given ba-
sic wavelet ψ(t), the function φa(t, λ), which depends on
both the properties of random process itself and filter-
ing properties of measuring equipment, is not known ex-
actly. Therefore, we have to construct a decomposition,
which has a well defined limit to deterministic case and
can be tackled without exact knowledge of the form of
basic wavelet.

To do it we can factorize the scaling part of the left-
invariant measure from “purely stochastic part”

ξ(t) =

∫
φa(t, λ)ηa(dλ)

da

a
,

or in the spectral form

ξ(t) =
1

2πCψ

∫
eıλtψ̃(λa)ηa(dλ)

da

a
, (13)

where ηa(dλ) can be considered as generalized wavelet co-
efficients, the existence of which does not require the exis-
tence of “no-scale” prototype. The left invariant measure
dµ(a) = da/(2πa) on the multiplicative group x′ = ax
instead of (5), since translations are already incorporated
into the exponent.

The representation (13) was constructed only to meet
the non-stochastic limit and is not unique. For instance,
we can redefine the spectral measure to incorporate both
the properties of the signal and that of measuring appa-
ratus

ξ(t) =

∫
eıλtη̂a(dλ)

da

a
·

The specific energy-per-scale density can be defined
from the decomposition of the total energy E(·) =∫
ξ(t, ·) ¯ξ(t, ·)dt in terms of the wavelet images of the signal

E(·) = C−1
ψ

∫
|Wψ(a, b, ·)|2

dadb

a2
≡

∫
E(a, ·)da.

Since ξ(t, ·) is a random function its wavelet images
Wψ(a, b, ·), the integrals E(a, ·), E(·) and their Fourier
transforms are also random.
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Taking the mathematical expectation of the both sides
of the equality E(·) =

∫
E(a, ·)da, where

E(a, ·) =
1

2πCψ

∫
|Ŵψ(a, k, ·)|2

a
dk

we arrive at

ME(·) =
1

2πCψ

∫
da

a
M

∫
|Ŵψ(a, k)|2dk (14)

or

∂E

∂ ln a
=

1

2πCψ
M

∫
|Ŵ (a, k)|2dk (15)

where E ≡ ME(·). The latter equation (15) has the
form of the RG equation for the energy in quantum field
theory. The components Ŵ (a, k), initially defined as a

ψ-filtered initial signal ξ(k, ·), Ŵ (a, k) = ψ̃(ak)ξ̃(k), in
our approach can be understood as the original noisy sig-
nal ξ perceived by filter ψ, i.e. as generalized wavelet
coefficients, not necessary having “no-scale” prototypes,
cf. equation (13).

4 Differences from standard wavelet approach

To clarify the differences from standard wavelet approach
let us start with the MRA framework (2).

Let Vj , j ∈ ZZ be a nested family of subsets of L2(R)
obeying (2).

The wavelet decomposition is performed by sequential
projection of the finest resolution sample fN ∈ VN of the
function f by means of projection operator to projections
on orthogonal complements Wj = Vj+1 \ Vj , since Vj+1 =
Vj ⊕Wj . This decomposition has the form

fj+1 = gj + fj = gj + gj−1 + fj−1

= gj + . . .+ gj−m + fj−m, (16)

where

fj := Pjf, gj = (Pj+1 − Pj)f := Qjf.

If the function f describes the measured experimental sig-
nal, then there is a finest resolution sample fN , (N <∞).
fN−1 can be considered as first blurring of fN , and gN−1

accounts for the details neglected in this blurring, cf. (16).
Schematically, the process is presented at the diagram bel-
low.

fN → fN−1 → fN−2 → . . .
↘ ↘ ↘
gN−1 gN−2 . . .

(17)

Since in each blurring fk → fk−1 some information is
lost, for sufficiently large m the fk−m projections can be
regarded as insignificant constants – the whole informa-
tion is therefore stored in the sequence of projections onto
W spaces

{gn−1, gn−2, . . . gn−m}. (18)

The function fn−k may be considered as the measurement
of the process f at kth resolution level, where k = 0 stands
for finest possible resolution. Since fk−1 = Pfk, the pro-
cess has truly renormalization group nature, if P is a con-
stant operator. Physically, the process of measuring always
implies certain averaging (quantum aspects are not con-
sidered here), and the measuring at different resolution
levels may obey different laws

fk−1 = Pkfk, fm−1 = Pmfm, Pk 6= Pm.

The finest resolution level fn=∞ simply may not exist, e.g.
it is meaningless to to speak about velocity of fluid flow at
10−8 cm scales. In this case the sequence (18) has its own
meaning and is the unique representative of the measured
process.

fN := gN−1 + . . .+ gN−M + const.,

or in continuous approximation:

fA(x) = C−1
ψ

∫ ∞
A

Wψ(a, b)a−1/2ψ

(
x− b

a

)
dadb

a2
· (19)

Thus, instead of a single function f ∈ L2(R) we need a
family of functions {fA}A, indexed by resolution parame-
ter A.

To summarize it briefly, in wavelet approach the de-
composition of a certain function f ∈ L2(R) is performed,
in our approach the indexed family (19) is used without
any requirements on existence of f∞.

5 High frequency cutoff

Being utmost scale-invariant at moderate scales, the be-
havior of turbulent velocity field changes when approach-
ing the smallest and largest scales, between which the
hydrodynamical description is valid. The former is the
Kolmogorov dissipative scale (η), the latter is the size of
the system. The size of the system can often be set to infin-
ity with no harm to physics; whilst the dissipative scale is
of physical importance, since the energy dissipation rate ε̄
is very constant which determines the turbulence behavior
in inertial range.

That is why in RG, as well as in spectral calculations,
the cutoff dependent velocity field is often considered

v<F (x) =
1

(2π)d

∫
|k|<F

exp(ıkx)ṽ(k)dk. (20)

The cumulative energy of all harmonics with wave vectors
less or equal to the cut-off value F is one of the main
spectral characteristics of developed turbulence

E(F ) =
1

2
M

∫
v<F (x)v<F (x)ddx

=
1

2
M

∫
|k|<F

ṽ(k)ṽ(k)
ddk

(2π)d
· (21)
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Similarly, we can consider the cumulative energy of all
velocity fluctuations with typical size greater or equal to
a given A. For simplicity let us consider a one-component
velocity field considered as a function of time

E(A) =
1

2
M

∫
|a|≥A

v(t)v(t)dt

=
1

Cψ
M

∫ ∞
a=A

|Wψ(a, b)v|2
dadb

a2

= C−1
ψ

∫ ∞
A

|ψ̃(y)|2

y
dy ·M

∫
|ṽ(k)|2

dk

2π
(22)

where

lim
A→0

2

∫ ∞
a=A

|ψ̃(y)|2

y
dy = Cψ and E =

1

2
M

∫
|ṽ(k)|2

dk

2π

is the total energy of all velocity fluctuations.
For non-vanishing A

E(A) = F (A)E,

where

F (A) =

∫∞
A
|ψ̃(y)|2

y
dy∫∞

0
|ψ̃(y)|2

y
dy
· (23)

For definiteness, let us calculate the filtering function
F (A) for a particular family of vanishing momenta
wavelets (often used for studying of hydrodynamical ve-
locity field [8,9]).

ψn(x) = (−1)n
dn

dxn
exp(−x2/2),

ψ̃n(k) =
√

2π(−ık)n exp(−k2/2). (24)

The normalization constant for this family is Cn =

2π
∫∞
−∞ k

2n−1e−k
2

dk = 2πΓ (n) and so

Fn(A) =

∫∞
A2 y

n−1e−ydy

Γ (n)
· (25)

The derivative of cumulative energy with respect to

logarithmic measure da/a is

∂E

∂ lnA
= E

∂Fn(E)

∂ lnA
= −

∂A2

∂ lnA
fn(A2)

where fn(x) = xn−1e−x/Γ (n). So we arrive at RG like
equation

∂E

∂ lnA
= −

2A2n exp(−A2)

Γ (n)
E. (26)

For sufficiently small A the exponential term is close to
unity, and thus the behavior is approximately proportional
to A2. This is a power law behavior of the energy, similar
to that calculated by field theory methods in hydrody-
namic turbulence theory [3].
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